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Abstract

Variable selection is one of the important practical issues for many scientific engineers. Although the PLS (partial least squares) regression

combined with the VIP (variable importance in the projection) scores is often used when the multicollinearity is present among variables,

there are few guidelines about its uses as well as its performance. The purpose of this paper is to explore the nature of the VIP method and to

compare with other methods through computer simulation experiments. We design 108 experiments where observations are generated from

true models considering four factors–the proportion of the number of relevant predictors, the magnitude of correlations between predictors,

the structure of regression coefficients, and the magnitude of signal to noise. Confusion matrix is adopted to evaluate the performance of PLS,

the Lasso, and stepwise method. We also discuss the proper cutoff value of the VIP method to increase its performance. Some practical hints

for the use of the VIP method are given as simulation results.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The quality of a final product in a process industry is

believed to be determined by a lot of process variables.

Process engineers are often interested in finding vital few

process variables that would be most influential on the

quality of the product. With only several variables in

hand, their control problem for the quality improvement

would become much easier. Although stepwise regression

methods are often used for this purpose due to their

simplicity, there are several reasons why process engi-

neers are often not satisfied with the results. One of them

is its poor performance when the multicollinearity exists

among variables. Under this situation, the VIP (Variable

Importance in the Projection) scores obtained by the
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partial least squares (PLS) regression, has been paid an

increasing attention these days as an importance measure

of each explanatory variable or predictor [1]. However,

the performance and the use of the VIP scores are not

well discovered.

The objective of this study is to investigate the

performance of the VIP scores for selecting the relevant

process variables which breallyQ have an effect on the

response or have nonzero coefficients. For this purpose,

we used computer simulation experiments where some

true models are assumed and data sets are generated so as

to mimic the typical manufacturing process which consists

of consecutive unit processes. We compare the perform-

ance of VIP scores under PLS (called PLS-VIP method)

with the PLS regression (called PLS-BETA method), the

Lasso regression [2] and the stepwise regression [3]. We

also aim to discuss the proper cutoff value of the PLS-VIP

method.

The rest of the paper is organized as follows. A brief

review of variable selection methods using PLS regression,
ory Systems 78 (2005) 103–112



I.-G. Chong, C.-H. Jun / Chemometrics and Intelligent Laboratory Systems 78 (2005) 103–112104
the Lasso regression and the stepwise regression is

given in Section 2. Section 3 describes the simulation

design and performance measure using confusion matrix.

The simulation results and the discussion are given in

Section 4. Finally, Section 5 concludes the paper with a

summary.
2. Variable selection methods

2.1. Partial least squares regression

In case of single response y and p predictors, PLS

regression model with h (hVp) latent variables can be

expressed as follows [4,5].

X ¼ TPt þ E ð1aÞ

y ¼ Tbþ f ð1bÞ

In Eq. (1a,b), X (n�p), T (n�h), P ( p�h), y (n�1), and

b (h�1) are respectively used for predictors, X scores, X

loadings, a response, and regression coefficients of T. The

k-th element of column vector b explains the relation

between y and tk, the k-th column vector of T. Meanwhile,

E (n�p) and f (n�1) stand for random errors of X and y,

respectively. Generally, by using the Nonlinear Iterative

Partial Least Squares (NIPALS) algorithm, a weight matrix

W ( p�h) is obtained to make || f || (Euclidian norm) as

small as possible and, at the same time, to derive a useful

relation between X and y. Here, unlike many other

applications, nNp is assumed due to the easiness of data

availability in process industries.

NIPALS algorithm: in case of single y.

Assume that the n�p matrix X and the column vector

y have been standardized to have mean 0 and unit

variance. In the following, tk, pk, and wk respectively

stand for the k-th column vector of T, P, and W. The k-th

latent variable is obtained iteratively as follows

(k=1,2,. . .,h). Thus, model parameters in Eq. (1a,b) are

determined accordingly.

Step 1 y(k)py(k�1)�bk�1tk�1; y(1)py and X(k)pX(k�1)�
tk�1pk�1

t; X(1)pX

Step 2 wk
t = yt(k)X(k)/y

t
(k) y(k)

Step 3 wkpwk/OwkO
Step 4 tk=X(k)wk/wk

twk

Step 5 ptk=t
t
kX(k)/tk

t tk
Step 6 tkptk !OpkO
Step 7 wkpwk !OpkO
Step 8 pkppk/OpkO
Step 9 bk=y

t
(k)tk/tk

t tk

Here, two variable selection methods using PLS regres-

sion will be considered. The first one is to use VIP scores

(PLS-VIP method) and the other is to use regression
coefficients estimated by PLS regression (called PLS-BETA

method).

2.1.1. PLS-VIP method

The VIP score of a predictor, first published in [6],

is a summary of the importance for the projections to

find h latent variables. The VIP score for the j-th

variable can be calculated by Eq. (2). On the other hand,

since the average of squared VIP scores equals 1, dgreater
than one ruleT is generally used as a criterion for variable

selection.

VIPj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
Xh
k¼1

SS bk tkð Þ wjk=jjwkjj
� �2� �,Xh

k¼1

SS bk tkð Þ

vuut ;

where SS bk tkð Þ ¼ b2k t
t
k tk ð2Þ

2.1.2. PLS-BETA method

The relation of T and W obtained by the NIPALS

algorithm is given by Eq. (3) [7].

T ¼ XW* where W* ¼ PtWð Þ�1 ð3Þ

From this, the predicted values can be directly calculated

by Eq. (4). The relevant predictors could be selected

according to the magnitude of the absolute values of

regression coefficients.

ŷy ¼ T T tTð Þ�1
T ty ¼ Xbpls ð4Þ

where bpls ¼ W PtWð Þ�1
T tTð Þ�1

T ty

2.2. Least absolute shrinkage and selection operator

(Lasso)

The Lasso [2] minimizes the residual sum of squares

subject to the sum of the absolute value of the coefficients

being less than a constant s. In view of shrinking the

regression coefficients by imposing a penalty on their size,

the Lasso is similar in spirit to Ridge regression. If the data

are standardized to have mean 0, the Lasso estimate is

defined by Eq. (5). Here a tuning parameter, sz0, can be

determined by the cross-validation. Because of the nature of

the constraint it tends to produce some coefficients as zero

and it may improve the overall prediction accuracy by

sacrificing a little bias to reduce the variance of the

predicted values.

b̂blasso ¼ argmin
b

y� Xbð ÞT y� Xbð Þ

subject to
Xp
j�1

jbjjVs ð5Þ

Although the solution to Eq. (5) can be obtained by the

standard quadratic programming with linear inequality
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constraints, the use of Least Angle Regression (LARS)

algorithm reduces the computation burden [8].

LARS algorithm for the Lasso estimate.

Assume that the predictors have been standardized to

have a mean 0 and unit length, and that the response has a

mean 0. In the k-th iteration, the algorithm is roughly

described as follows.

Step 1 Update the active set. Calculate the absolute

current correlations.

ĉckj ¼ xtj y� ŷyk�1ð Þ; ŷy0 ¼ 0 and ĈCk ¼ max
j

jĉckjj
� �

Update the active set A(k).

A kð Þ ¼ A k � 1ð Þ þ ĵj
� �

; A 0ð Þ ¼ /

and ĵj ¼ argmax
jgA k�1ð Þ

jĉckjj
� �

Step 2 Determine the least angle direction (uk). Define Xk=

(: : :sjxj: : :)jaA(k) where sj=sign{ĉkj} and wk=Ak(Xk
t Xk)

�11k
where Ak=(1k

t (Xk
t Xk)

�11k)
�0.5 (Here, 1k is a vector of 1’s of

length equaling |A|, the size of A.) Calculate the least angle

direction.

uk ¼ Xkwk

Step 3 Calculate the step size. Define akj=x j
tuk for

jgA(k). Determine the step size.

If |A| equals the number of predictors,

ĉck ¼ ĈCk=Ak and the algorithm is terminated

else

ĉck ¼ minþ
jgA kð Þ ĈCk � ĉckj

� �
= Ak � akj
� �

; ĈCk þ ĉckj
� ��

= Ak þ akj
� ��

(Here, bmin+Q indicates that the minimum is taken over

only positive components within each choice of j.)

Step 4 Predict the response.

c̃ck ¼ min
cjN0; jaA kð Þ

cj
� �

where cj ¼ � b̂bj= sjwkj

� �
; c̃c1 ¼ l

If c̃ckbĉck

ŷyk ¼ ŷyk�1 þ c̃ckuk

if jaA; b̂bjpb̂bj þ c̃ckwkjsj: Otherwise; b̂bj ¼ 0

A k þ 1ð Þ ¼ A kð Þ � j̃j
� �

where j̃j ¼ argmin
cjN0; jaA kð Þ

cj
� �

ĉckþ1 j ¼ xtj y� ŷkð Þ and ĈCkþ1 ¼ max
j

jĉckþ1 jj
� �
Go to Step 2.

else

ŷyk ¼ ŷyk�1 þ ĉckuk

if jaA; b̂bjpb̂bj þ ĉckwkjsj: Otherwise; b̂bj ¼ 0

Go to Step 1.

2.3. Stepwise regression

Stepwise regression is a standard procedure for variable

selection, which is based on the procedure of sequentially

introducing the predictors into the model one at a time. The

stepwise regression is classified into three methods: forward

selection, backward elimination and stepwise method. The

forward selection adds predictors to the model one at a time.

In contrast to the forward selection, the backward elimi-

nation begins with the full model and successively

eliminates one predictor at a time. An advantage of a

forward selection for a large number of correlated variables,

as opposed to backward elimination, is that the XtX matrix

does not need to be inverted. Meanwhile, the stepwise

method starts as the forward selection, but at each stage the

possibility of deleting a predictor, as backward elimination,

is considered.

In these methods, the number of predictors retained in

the final model is determined by the levels of significance

assumed for inclusion and exclusion of predictors from the

model. In view of the brule-of-thumbQ, the significance

levels of 0.15 give equation with low Mallows-Cp [9]. On

the other hand, the three methods are expected to perform

similarly, so in this study only the stepwise method will be

considered for the comparison. We use the equal signifi-

cance level as entry and removal criteria and select the

proper one from 0.05, 0.1, 0.15, and 0.2 by cross-

validation.
3. Experimental

3.1. Design of simulations

We generate datasets by assuming that true response

follows a linear model having p predictors defined as Eq.

(6).

yi ¼
Xp
j¼1

bjxij þ ei;

where ei f
iid

N 0; r2
� �

; i ¼ 1; 2; N ; 500ð Þ ð6Þ

Here, the data matrix X=(xij) is generated by assuming a

special correlation structure described in Section 3.1.2. For

convenience, we fix the number of relevant predictors as 10

and therefore the rest of predictors ( p�10) are irrelevant to
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the response over all cases. We design 108 (=3�3�4�3)

different cases with four factors–the proportion of the

number of relevant predictors among total predictors (3

levels), the magnitude of correlations between predictors (3

levels), the structure of regression coefficients (4 levels),

and the magnitude of signal to noise (3 levels). In each case,

100 replications are made and performance measures are

calculated. At each replication, a different dataset of 500

observations is generated from Eq. (6).

3.1.1. The proportion of relevant predictors among total

predictors

This factor defined as Eq. (7) has three levels of 0.5, 0.25

and 0.1. These levels correspond to p=20, 40, and 100,

respectively.

proportion ¼ 10=p ð7Þ

3.1.2. Magnitude of correlations between predictors

At each replication, a new set of 500 rows of X is

generated from multivariate normal distribution with zero

mean vector and variance–covariance matrix of G. The

elements of matrix G are chosen as Eq. (8) since

neighboring process variables (temperatures, e.g.) tend to

be strongly correlated in a real manufacturing process which

consists of consecutive unit processes.

G ij ¼ qji�jj; i; j ¼ 1; 2; N ; pð Þ ð8Þ

Here, q is the magnitude of correlations between

predictors which has three levels of 0.5, 0.7 and 0.9. Note

that Eq. (8) gives a very specific pattern to the eigenvalues

and eigenvectors of G [10]. Fig. 1 shows a comparison of

eigenvalues of the covariance matrix from a real data

encountered in a steel process with those from G in Eq. (8)

for p=145 and q=0.9. In case of G, a sequence of 21

eigenvalues is gradually decreasing from 18 to 1, explaining

85.5% of the variance with the remaining eigenvalues all

small (but larger than 0.05). Meanwhile, in case of real data,

a sequence of 32 eigenvalues is gradually decreasing from

30 to 1 explaining 81% of the variance with the remaining
Fig. 1. Comparison of eigenvalues betw
eigenvalues, all small (but larger than 0.0001 except two

values near zero). Two patterns of eigenvalues are not

exactly the same, but the decreasing patterns are similar to

each other.

3.1.3. Structure of regression coefficients

The third factor is the structure of regression coefficients.

Two types of equal and unequal coefficients are compared.

It is intended to know performance of selection methods

according to whether relevant predictors have similar effects

on the response or not. Each type has two levels according

to the location of relevant predictors; in the middle of the

range and at the extremes.

In case of equal type, the coefficients of 10 relevant

predictors are chosen as Eq. (9.a).

! In the middle of range

bj ¼ 1; j ¼ p=2� 4; p=2� 3; N ; p=2þ 5ð Þ ð9:aÞ

! At the extremes

bj ¼ 1; j ¼ 1; 2; N ; 5; p� 4; p� 3; N ; pð Þ ð9:bÞ

In case of unequal type, the coefficients of 10 relevant

predictors are constructed as Eq. (10.a).

! In the middle of the range

bj ¼ 5:5� jj� 0:5 pþ 1ð Þjð Þ2;
ðj ¼ p=2� 4; p=2� 3; N ; p=2þ 5Þ ð10:aÞ

! At the extremes

bj ¼ jj� 0:5 pþ 1ð Þj � 0:5 p� 11ð Þð Þ2;
j ¼ 1; 2; N ; 5; p� 4; p� 3; N ; pð Þ ð10:bÞ

All irrelevant predictors have zero coefficients in both

types. For example, in case of unequal type, when the

relevant coefficients are in the middle for p=20, bj’s are

(0, 0, 0, 0, 0, 1, 4, 9, 16, 25, 25, 16, 9, 4, 1, 0, 0, 0, 0,
een real data and artificial data.



Table 1

Confusion matrix and the descriptions of its entries

Predicted classes

Irrelevant predictor

(IR)

Relevant predictor

(R)

True

classes

Irrelevant

predictor

(IR)

a: the number of

irrelevant predictors

classified correctly

b: the number of

irrelevant predictors

classified incorrectly

Relevant

predictor

(R)

c: the number of

relevant predictors

classified incorrectly

d: the number of

relevant predictors

classified correctly
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0). When the relevant coefficients are at the extremes,

they are (25, 16, 9, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4,

9, 16, 25).

3.1.4. Magnitude of signal to noise

We are interested in knowing whether the performance of

variable selection methods is affected by the model fitness.
Table 2

Mean G of each method along the cases

k=0.33

V L

Equal coefficients-middle Prop.=0.5 q=0.5 0.964 0.755

q=0.7 0.961 0.804

q=0.9 0.987 0.821

Prop.=0.25 q=0.5 0.998 0.863

q=0.7 0.980 0.891

q=0.9 0.921 0.907

Prop.=0.1 q=0.5 0.990 0.930

q=0.7 0.974 0.946

q=0.9 0.912 0.958

Equal coefficients-extreme Prop.=0.5 q=0.5 0.989 0.748

q=0.7 0.988 0.780

q=0.9 0.883 0.777

Prop.=0.25 q=0.5 0.990 0.842

q=0.7 0.959 0.882

q=0.9 0.942 0.898

Prop.=0.1 q=0.5 0.987 0.915

q=0.7 0.966 0.937

q=0.9 0.901 0.952

Unequal coefficients-middle Prop.=0.5 q=0.5 0.772 0.746

q=0.7 0.819 0.803

q=0.9 0.897 0.769

Prop.=0.25 q=0.5 0.861 0.841

q=0.7 0.964 0.856

q=0.9 0.940 0.831

Prop.=0.1 q=0.5 0.941 0.885

q=0.7 0.983 0.896

q=0.9 0.916 0.862

Unequal coefficients-extreme Prop.=0.5 q=0.5 0.798 0.745

q=0.7 0.854 0.781

q=0.9 0.790 0.766

Prop.=0.25 q=0.5 0.898 0.824

q=0.7 0.970 0.849

q=0.9 0.960 0.847

Prop.=0.1 q=0.5 0.966 0.881

q=0.7 0.976 0.895

q=0.9 0.908 0.883

V: PLS-VIP, L: Lasso, S: Stepwise.
To investigate this, when generating yi we select the

standard deviation of error terms through Eq. (11) where

k, the reciprocal of signal to noise ratio, has three levels of

0.33, 0.74, and 1.22. These levels are set so that R-square of

the multiple linear regression with an intercept becomes 0.9,

0.65 and 0.4, respectively, when infinite observations are

assumed. Some simple calculations using the formula for R-

square give k=((1-R2)/R2)1/2.

r ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Xbð Þ

p
; k ¼ 0:33; 0:74; 1:22ð Þ ð11Þ

where var(d ) is the sample variance.

3.2. Performance measure

For the evaluation of different selection methods we

adopt the confusion matrix which contains information
k=0.74 k=1.22

S V L S V L S

0.966 0.967 0.746 0.951 0.958 0.749 0.875

0.975 0.960 0.793 0.881 0.948 0.791 0.737

0.876 0.964 0.755 0.660 0.950 0.715 0.550

0.973 0.993 0.848 0.959 0.992 0.859 0.880

0.978 0.978 0.883 0.874 0.978 0.862 0.723

0.857 0.923 0.831 0.650 0.921 0.779 0.556

0.979 0.989 0.924 0.971 0.988 0.924 0.872

0.980 0.974 0.942 0.867 0.975 0.908 0.721

0.869 0.912 0.891 0.649 0.911 0.807 0.541

0.966 0.981 0.741 0.957 0.958 0.742 0.899

0.962 0.970 0.773 0.915 0.949 0.800 0.778

0.917 0.826 0.757 0.698 0.758 0.734 0.619

0.965 0.988 0.845 0.971 0.987 0.851 0.902

0.977 0.962 0.873 0.925 0.960 0.872 0.784

0.945 0.942 0.853 0.731 0.942 0.802 0.622

0.976 0.984 0.912 0.973 0.978 0.915 0.899

0.981 0.967 0.936 0.933 0.963 0.919 0.763

0.957 0.903 0.922 0.718 0.902 0.847 0.616

0.863 0.767 0.746 0.790 0.771 0.727 0.737

0.850 0.826 0.754 0.749 0.829 0.741 0.678

0.770 0.895 0.728 0.621 0.883 0.670 0.520

0.870 0.852 0.815 0.797 0.852 0.777 0.728

0.843 0.958 0.816 0.761 0.956 0.760 0.654

0.764 0.941 0.780 0.610 0.937 0.707 0.518

0.877 0.940 0.834 0.804 0.912 0.799 0.729

0.852 0.982 0.848 0.749 0.980 0.786 0.650

0.764 0.916 0.806 0.608 0.915 0.745 0.519

0.869 0.809 0.749 0.810 0.797 0.717 0.755

0.861 0.855 0.756 0.767 0.852 0.750 0.722

0.789 0.796 0.728 0.682 0.784 0.711 0.590

0.883 0.891 0.802 0.815 0.893 0.766 0.752

0.866 0.973 0.801 0.777 0.971 0.791 0.710

0.797 0.956 0.780 0.691 0.945 0.755 0.603

0.885 0.960 0.840 0.814 0.944 0.816 0.756

0.873 0.973 0.857 0.777 0.971 0.806 0.701

0.802 0.909 0.828 0.681 0.909 0.779 0.601
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about true and predicted classes. Table 1 shows the

confusion matrix and the meanings of its entries in the

context of our study.

From Table 1 accuracy, sensitivity, and specificity are

respectively defined as Eqs. (12)–(14).

Accuracy ¼ aþ dð Þ= aþ bþ cþ dð Þ ð12Þ

Sensitivity ¼ d= cþ dð Þ ð13Þ

Specificity ¼ a= aþ bð Þ ð14Þ

In the classification area, the usual performance measure

is accuracy which is the proportion of predictors correctly

classified. However, it may not be suitable when there is an

imbalance between the numbers of irrelevant and relevant

predictors. For example, consider the case where the

proportion of relevant predictors equals 0.1. A method that

always classifies all predictors as irrelevant will achieve an

accuracy of 90%. Although this looks high, the method

would be useless because it totally fails to select relevant

predictors.

Thus, instead of using accuracy as the overall perform-

ance measure, we suggest using G, the geometric mean of

sensitivity (the proportion of selected relevant predictors

among relevant predictors) and specificity (the proportion of
Fig. 2. Mean G of each meth
unselected irrelevant predictors among irrelevant predictors)

[11] as in Eq. (15).

G ¼ Sensitivity� Specificityð Þ1=2 ð15Þ

The value of G ranges between 0 and 1. The values close

to 1 imply that most predictors are classified correctly. As

mentioned in ref. [11], this measure has the distinctive

property of being independent of the numbers of relevant

and irrelevant predictors, and is thus robust regardless of the

level of proportion.
4. Results and discussion

4.1. PLS-VIP method vs. the Lasso or Stepwise method

The number of latent variables for PLS regression, the

tuning parameter for the Lasso and the significant levels

for stepwise regression are determined by five-fold cross-

validation which is widely used for estimating prediction

error [12]. As mentioned before, 100 replications for each

of 108 cases are made to evaluate the performance of the

variable selection methods. At each replication, perform-

ance measure of G was calculated. In addition, the root

mean squared error (RMSE) of predicted response for

each method was also obtained to examine prediction

performance.
od according to factors.
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4.1.1. Comparison based on G

Table 2 summarizes the simulation results of variable

selection performance by using the average G over 100

replications along the cases. The bold figures denote the

best ones. As seen in Table 2, in most cases, the PLS-

VIP method outperforms the other methods particularly

when the error variance is large in data set or when the

model fitness (R-square) is relatively low. On the other

hand, Fig. 2 shows the average G of each method

according to factors. We confirm again that the PLS-

VIP method outperforms the other methods over all

factors. Besides, the PLS-VIP method seems to be

insensitive to noise while the others seem to be

sensitive.

4.1.2. Comparison based on RMSE

Although the objective of this study is not to compare

performance of response prediction, we provide estimates of
Table 3

Mean RMSE of each method along the cases

k=0.33

P L S

Equal coefficients-middle Prop.=0.5 q=0.5 1.650 1.654

q=0.7 2.086 2.083

q=0.9 2.792 2.773

Prop.=0.25 q=0.5 1.640 1.655

q=0.7 2.081 2.081

q=0.9 2.812 2.790

Prop.=0.1 q=0.5 1.597 1.657

q=0.7 2.031 2.071

q=0.9 2.722 2.743

Equal coefficients-extreme Prop.=0.5 q=0.5 1.522 1.526

q=0.7 1.815 1.810

q=0.9 2.405 2.383

Prop.=0.25 q=0.5 1.504 1.519

q=0.7 1.792 1.796

q=0.9 2.158 2.155

Prop.=0.1 q=0.5 1.446 1.510

q=0.7 1.737 1.783

q=0.9 2.063 2.091

Unequal coefficients-middle Prop.=0.5 q=0.5 22.40 22.43 2

q=0.7 26.81 26.81 2

q=0.9 32.57 32.51 3

Prop.=0.25 q=0.5 22.08 22.36 2

q=0.7 26.63 26.91 2

q=0.9 32.26 32.38 3

Prop.=0.1 q=0.5 21.22 22.32 2

q=0.7 25.74 26.79 2

q=0.9 31.48 32.37 3

Unequal coefficients-extreme Prop.=0.5 q=0.5 19.12 19.20 1

q=0.7 21.40 21.43 2

q=0.9 26.33 26.28 2

Prop.=0.25 q=0.5 18.82 19.13 1

q=0.7 21.09 21.34 2

q=0.9 23.84 24.03 2

Prop.=0.1 q=0.5 17.91 19.04 1

q=0.7 20.08 21.15 2

q=0.9 23.09 23.83 2

P: PLS, L: Lasso, S: Stepwise.
the RMSEs as in Eq. (16) for different methods as

supplement information.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX500
i¼1

yi � ŷyið Þ2=500

vuut ð16Þ

Table 3 summarizes the simulation results of prediction

performance by using the average RMSE over 100 runs

along the cases. The best method is also shown in bold type.

Unlike variable selection performance, PLS does not out-

perform the other methods in some cases. This means that

there may not be a strong relation between variable selection

and prediction performance.

4.2. PLS-VIP method vs. PLS-BETA method

Now, we also compare the PLS-VIP method and the

PLS-BETA method. Assuming that the number of relevant
k=0.74 k=1.22

P L S P L S

1.656 3.722 3.707 3.710 6.114 6.069 6.074

2.087 4.712 4.682 4.688 7.720 7.681 7.701

2.776 6.202 6.172 6.187 10.39 10.35 10.37

1.655 3.655 3.667 3.663 6.150 6.124 6.121

2.082 4.716 4.689 4.684 7.760 7.741 7.758

2.795 6.231 6.205 6.221 10.39 10.37 10.36

1.643 3.536 3.646 3.612 6.014 6.081 6.035

2.051 4.586 4.639 4.611 7.611 7.656 7.609

2.734 6.190 6.233 6.214 10.16 10.18 10.15

1.528 3.438 3.427 3.430 5.659 5.639 5.644

1.812 4.087 4.058 4.062 6.700 6.667 6.686

2.386 5.342 5.310 5.320 8.786 8.756 8.769

1.519 3.403 3.412 3.416 5.656 5.668 5.670

1.797 4.057 4.056 4.053 6.652 6.644 6.649

2.155 4.870 4.842 4.855 7.978 7.960 7.970

1.498 3.234 3.343 3.319 5.505 5.607 5.562

1.771 3.912 3.983 3.950 6.498 6.622 6.586

2.086 4.676 4.724 4.726 7.765 7.811 7.793

2.46 50.22 50.25 50.29 82.71 82.71 82.71

6.85 60.16 60.16 60.21 99.17 99.10 99.18

2.58 72.54 72.43 72.56 121.6 121.3 121.4

2.37 49.59 50.11 50.08 82.62 83.19 82.90

6.88 60.10 60.41 60.34 98.69 99.03 98.98

2.40 72.86 72.91 72.97 119.7 119.7 119.9

2.13 48.04 50.09 49.43 82.29 83.76 82.72

6.57 58.46 60.03 59.53 96.08 98.14 97.23

2.25 71.28 72.31 72.05 118.4 119.1 118.5

9.21 42.99 43.11 43.17 70.83 70.95 71.04

1.47 48.35 48.35 48.43 79.33 79.43 79.47

6.35 58.58 58.56 58.63 96.97 96.66 96.87

9.15 42.42 42.92 42.92 70.20 71.02 70.96

1.35 47.89 48.24 48.28 78.33 78.77 78.72

4.06 54.36 54.45 54.61 90.29 90.26 90.36

8.86 40.62 42.52 42.07 67.91 70.73 70.00

0.99 46.33 47.88 47.55 77.15 79.16 78.39

3.80 52.68 53.74 53.65 87.39 88.42 88.33



Table 4

Comparison between PLS-VIP and PLS-BETA method

Equal coefficients Unequal coefficients

k=0.33 k=0.74 k=1.22 k=0.33 k=0.74 k=1.22

V B V B V B V B V B V B

Location of coefficients:

middle

Prop.=0.5 q=0.5 9.99 10 10 9.99 9.91 9.91 9.41 8.5 9.47 8.15 9.32 7.98

q=0.7 9.96 10 9.94 9.91 9.9 9.83 9.65 8.35 9.72 7.93 9.65 8

q=0.9 9.99 9.9 9.9 9.69 9.76 9.07 9.93 8.23 9.83 8.13 9.69 8.15

Prop.=0.25 q=0.5 10 10 9.98 10 9.98 9.98 9.4 8.27 9.36 7.94 9.03 7.59

q=0.7 9.99 10 9.95 9.98 9.91 9.9 9.77 8.12 9.68 8.07 9.61 7.88

q=0.9 9.98 9.98 9.9 9.82 9.71 9.41 9.95 8.18 9.85 8.3 9.68 8.26

Prop.=0.1 q=0.5 10 10 9.96 10 9.96 9.95 9.28 8.04 9.13 7.72 8.51 8.15

q=0.7 9.98 10 9.94 9.99 9.88 9.87 9.82 8.14 9.76 8.21 9.53 8.14

q=0.9 10 10 9.9 9.89 9.75 9.66 9.93 8.35 9.86 8.92 9.72 8.99

Location of coefficients:

extreme

Prop.=0.5 q=0.5 9.99 10 9.96 9.99 9.86 9.94 9.44 8.66 9.46 7.92 9.24 7.93

q=0.7 9.95 10 9.82 9.97 9.68 9.88 9.64 8.42 9.56 7.96 9.4 7.84

q=0.9 8.7 9.96 8.14 9.82 7.36 9.55 7.75 8.16 7.65 8 7.58 8.38

Prop.=0.25 q=0.5 9.99 10 9.99 10 9.89 9.95 9.52 8.2 9.33 7.69 9.24 7.33

q=0.7 9.99 10 9.84 10 9.68 9.9 9.58 8.01 9.62 7.54 9.57 7.75

q=0.9 9.85 10 9.73 9.89 9.45 9.69 9.55 7.83 9.51 7.86 9.22 8.43

Prop.=0.1 q=0.5 9.98 10 10 10 9.87 9.87 9.38 8.01 9.23 7.51 8.77 7.42

q=0.7 9.98 10 9.92 10 9.74 9.93 9.7 7.89 9.6 7.87 9.48 8.13

q=0.9 9.85 10 9.6 9.97 9.29 9.8 9.72 8.11 9.5 8.46 9.42 8.78

V: PLS-VIP, B: PLS-BETA.
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predictors is known as K (i.e., K=10), we select predictors

having the first K largest VIP scores as well as those

having the first K largest absolute coefficients, then

compare the performance using average number of

relevant predictors among K selected predictors over 100

runs. As seen in Table 4, when the structure of coefficients

is equal, PLS-BETA method outperforms PLS-VIP method

in most cases. When the structure of coefficients is

unequal, the PLS-VIP method outperforms the PLS-BETA

method.
Table 5

Mean proper cutoff values along the cases

Equal coeffic

k=0.33

Location of coefficients:

middle

Prop.=0.5 q=0.5 0.80

q=0.7 0.87

q=0.9 0.97

Prop.=0.25 q=0.5 0.93

q=0.7 1.04

q=0.9 1.08

Prop.=0.1 q=0.5 1.11

q=0.7 1.32

q=0.9 1.39

Location of coefficients:

extreme

Prop.=0.5 q=0.5 0.83

q=0.7 0.93

q=0.9 0.94

Prop.=0.25 q=0.5 1.00

q=0.7 1.12

q=0.9 1.06

Prop.=0.1 q=0.5 1.22

q=0.7 1.44

q=0.9 1.34
4.3. Cutoff values of the PLS-VIP method

Although the performance of PLS-VIP method may

depend on the cutoff value, dgreater than one ruleT is

generally used to select relevant predictors. The proper

cutoff value of the PLS-VIP method according to 108 cases

is provided by averaging vi* which is defined by Eq. (17)

where v varies from 0.01 to 3 with increments of 0.01. Here,

G is a concave function of v and the subscript i is for a

replication in a case. Table 5 shows the mean proper cutoff
ients Unequal coefficients

k=0.74 k=1.22 k=0.33 k=0.74 k=1.22

0.81 0.80 0.64 0.66 0.67

0.88 0.85 0.79 0.78 0.79

0.94 0.94 0.93 0.94 0.93

0.93 0.95 0.71 0.72 0.71

1.02 1.04 0.92 0.91 0.90

1.09 1.07 1.05 1.04 1.03

1.15 1.16 0.84 0.87 0.88

1.33 1.31 1.14 1.12 1.07

1.40 1.38 1.35 1.33 1.30

0.84 0.84 0.67 0.66 0.71

0.93 0.90 0.83 0.84 0.81

0.80 0.92 0.87 0.90 0.84

1.00 0.99 0.78 0.80 0.78

1.08 1.07 0.94 0.92 0.94

1.05 1.02 0.98 1.00 0.96

1.24 1.22 0.94 0.92 0.98

1.41 1.36 1.18 1.16 1.15

1.37 1.33 1.28 1.28 1.26



Fig. 3. Mean proper cutoff values according to factors.
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values along the cases. As seen, some cases require higher

or lower cutoff values than one to increase the variable

selection performance of the PLS-VIP method.

viT ¼ Min argmax
va 0:01;0:02;N ;3f g

G vð Þ
 !(

þMax argmax
va 0:01;0:02;N ;3f g

G vð Þ
 !)

=2 ð17Þ

Fig. 3 shows the effect plots of mean proper cutoff values

according to factors. When proportion of relevant predictors

is low, the magnitude of correlation is high, or the structure

of coefficients is equal, the proper cutoff value is required to

be greater than one.
5. Conclusions

In this paper, we conducted 10,800 experiments to

explore the nature of the PLS-VIP method as compared

with other variable selection methods. Experiments were

designed by considering four factors including the propor-

tion of the number of relevant predictors among total

predictors, the magnitude of correlations between predic-

tors, the structure of regression coefficients, and the

magnitude of signal to noise.
First, the PLS-VIP method was compared with the Lasso

and Stepwise method. The PLS-VIP method performed

excellently in identifying relevant predictors and outperformed

the other methods. It was also found that a model with good

fitness performance may not guarantee good variable selection

performance. Thus, for the purpose of selecting relevant

process variables, process engineers must be careful when

using model performance such as RMSE, R-squares, etc.

Second, the PLS-VIP method was compared with the

PLS-BETA method. We found an interesting observation

that PLS-VIP and PLS-BETA method might be comple-

mentary. So, if we use a strategy which combines these two

methods for selecting relevant predictors, better variable

selection performance could be achieved. Actually, Wold et

al. [6] recommend a combination of PLS-VIP and PLS-Beta

for variable selection, which states that both should be small

for a variable to be excluded.

Finally, proper cutoff values of the PLS-VIP method

were provided to judge whether using the dgreater than one

ruleT is adequate or not. The proper cutoff value may be

higher than 1 under low proportion, high correlation, or an

equal coefficients structure.
Acknowledgements

We would like to thank two anonymous referees for

their valuable comments that have led to a substantial



I.-G. Chong, C.-H. Jun / Chemometrics and Intelligent Laboratory Systems 78 (2005) 103–112112
improvement in the paper. This work was supported by the

Brain Korea 21 project and by the Systems Bio-Dynamics

Research Center at POSTECH.
References

[1] S. Wold, M. Sjfstrfm, L. Eriksson, Chemom. Intell. Lab. Syst. 58

(2001) 109–130.

[2] R. Tibshirani, J. R. Stat. Soc. 58 (1996) 267–288.

[3] D.C. Montgomery, E.A. Peck, G.G. Vining, Introduction to Linear

Regression Analysis, 3rd ed., Wiley, New York, NY, 2001,

pp. 131–154.

[4] P. Geladi, B.R. Kowalski, Anal. Chim. Acta 185 (1986) 1–17.

[5] L. Eriksson, E. Johansson, N. Kettaneh-Wold, S. Wold, Multi-and

Megavariate Data Analysis; Principles and Applications, Umetrics

Academy, Umea, Sweden, 2001.
[6] S. Wold, E. Johansson, M. Cocchi, 3D QSAR in Drug Design;

Theory, Methods, and Applications, ESCOM, Leiden, Holland,

1993, pp. 523–550.

[7] I.S. Helland, Communications in Statistics–Simulation and Compu-

tation 17 (1988) 581–607.

[8] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, Ann. Stat. 32 (2)

(2004) 407–499.

[9] C.L. Mallows, Technometrics 15 (1973) 661–675.

[10] U. Grenander, G. Szego, Toeplitz Forms and their Applications,

University of California Press, Berkeley, 1958.

[11] M. Kubat, R.C. Holte, S. Matwin, Mach. Learn. 30 (1998) 195–215.

[12] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical

Learning, Springer, New York, 2001, pp. 214–217.


	Performance of some variable selection methods when multicollinearity is present
	Introduction
	Variable selection methods
	Partial least squares regression
	PLS-VIP method
	PLS-BETA method

	Least absolute shrinkage and selection operator (Lasso)
	Stepwise regression

	Experimental
	Design of simulations
	The proportion of relevant predictors among total predictors
	Magnitude of correlations between predictors
	Structure of regression coefficients
	Magnitude of signal to noise

	Performance measure

	Results and discussion
	PLS-VIP method vs. the Lasso or Stepwise method
	Comparison based on G
	Comparison based on RMSE

	PLS-VIP method vs. PLS-BETA method
	Cutoff values of the PLS-VIP method

	Conclusions
	Acknowledgements
	References


