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Abstract

Variable selection is one of the important practical issues for many scientific engineers. Although the PLS (partial least squares) regression
combined with the VIP (variable importance in the projection) scores is often used when the multicollinearity is present among variables,
there are few guidelines about its uses as well as its performance. The purpose of this paper is to explore the nature of the VIP method and to
compare with other methods through computer simulation experiments. We design 108 experiments where observations are generated from
true models considering four factors—the proportion of the number of relevant predictors, the magnitude of correlations between predictors,
the structure of regression coefficients, and the magnitude of signal to noise. Confusion matrix is adopted to evaluate the performance of PLS,
the Lasso, and stepwise method. We also discuss the proper cutoff value of the VIP method to increase its performance. Some practical hints

for the use of the VIP method are given as simulation results.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The quality of a final product in a process industry is
believed to be determined by a lot of process variables.
Process engineers are often interested in finding vital few
process variables that would be most influential on the
quality of the product. With only several variables in
hand, their control problem for the quality improvement
would become much easier. Although stepwise regression
methods are often used for this purpose due to their
simplicity, there are several reasons why process engi-
neers are often not satisfied with the results. One of them
is its poor performance when the multicollinearity exists
among variables. Under this situation, the VIP (Variable
Importance in the Projection) scores obtained by the
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partial least squares (PLS) regression, has been paid an
increasing attention these days as an importance measure
of each explanatory variable or predictor [1]. However,
the performance and the use of the VIP scores are not
well discovered.

The objective of this study is to investigate the
performance of the VIP scores for selecting the relevant
process variables which “really” have an effect on the
response or have nonzero coefficients. For this purpose,
we used computer simulation experiments where some
true models are assumed and data sets are generated so as
to mimic the typical manufacturing process which consists
of consecutive unit processes. We compare the perform-
ance of VIP scores under PLS (called PLS-VIP method)
with the PLS regression (called PLS-BETA method), the
Lasso regression [2] and the stepwise regression [3]. We
also aim to discuss the proper cutoff value of the PLS-VIP
method.

The rest of the paper is organized as follows. A brief
review of variable selection methods using PLS regression,
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the Lasso regression and the stepwise regression is
given in Section 2. Section 3 describes the simulation
design and performance measure using confusion matrix.
The simulation results and the discussion are given in
Section 4. Finally, Section 5 concludes the paper with a
summary.

2. Variable selection methods
2.1. Partial least squares regression

In case of single response y and p predictors, PLS
regression model with 4 (h<p) latent variables can be
expressed as follows [4,5].

X=TP +E (1a)

y=Tb+f (1b)

In Eq. (1a,b), X (nxp), T (nxh), P (p*xh),y (nx1), and
b (hx1) are respectively used for predictors, X scores, X
loadings, a response, and regression coefficients of 7. The
k-th element of column vector b explains the relation
between y and #;, the k-th column vector of 7. Meanwhile,
E (nXp) and f (nXx1) stand for random errors of X and y,
respectively. Generally, by using the Nonlinear Iterative
Partial Least Squares (NIPALS) algorithm, a weight matrix
W (pxh) is obtained to make | f| (Euclidian norm) as
small as possible and, at the same time, to derive a useful
relation between X and y. Here, unlike many other
applications, n>p is assumed due to the easiness of data
availability in process industries.

NIPALS algorithm: in case of single y.

Assume that the nXp matrix X and the column vector
y have been standardized to have mean 0 and unit
variance. In the following, #;, p;, and w; respectively
stand for the k-th column vector of T, P, and W. The k-th
latent variable is obtained iteratively as follows
(k=1,2,...,h). Thus, model parameters in Eq. (lab) are
determined accordingly.
Step I yuy— e~ y—bi1ti—1; yay—y and Xy Xg 1)~
tepi—1; X=X
Step 2 wi=yo Xw/VinYm
Step 3 wiewy/ Il Wy I
Step 4 tk:X(k)Wk/W]t(Wk
Step 5 pi=ti Xw/tits
Step 6 1t ”I’k I
Step 7 wi—wye I pll
Step 8 pr—pi/ ”Pk Il
Step 9 b=y ti/tity

Here, two variable selection methods using PLS regres-
sion will be considered. The first one is to use VIP scores
(PLS-VIP method) and the other is to use regression

coefficients estimated by PLS regression (called PLS-BETA
method).

2.1.1. PLS-VIP method

The VIP score of a predictor, first published in [6],
is a summary of the importance for the projections to
find % latent variables. The VIP score for the j-th
variable can be calculated by Eq. (2). On the other hand,
since the average of squared VIP scores equals 1, ‘greater
than one rule’ is generally used as a criterion for variable
selection.

h
VIP; = Z (SS bity) w,k/||wk|| /ZSS bity),

where SS(bity) = bktktk (2)

2.1.2. PLS-BETA method
The relation of T and W obtained by the NIPALS
algorithm is given by Eq. (3) [7].
T=XW* where W*=PW)"' 3)
From this, the predicted values can be directly calculated
by Eq. (4). The relevant predictors could be selected
according to the magnitude of the absolute values of
regression coefficients.

§=T(T'T)"'T'y = Xby, (4)

where by, = W(P'W) (T'T)"'T'y

2.2. Least absolute shrinkage and selection operator
(Lasso)

The Lasso [2] minimizes the residual sum of squares
subject to the sum of the absolute value of the coefficients
being less than a constant s. In view of shrinking the
regression coefficients by imposing a penalty on their size,
the Lasso is similar in spirit to Ridge regression. If the data
are standardized to have mean 0, the Lasso estimate is
defined by Eq. (5). Here a tuning parameter, s=>0, can be
determined by the cross-validation. Because of the nature of
the constraint it tends to produce some coefficients as zero
and it may improve the overall prediction accuracy by
sacrificing a little bias to reduce the variance of the
predicted values.

Bl = arg;nin (y—XB)" (y - XB)

Z |B;|<s (5)

Although the solution to Eq. (5) can be obtained by the
standard quadratic programming with linear inequality

subject to
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constraints, the use of Least Angle Regression (LARS)
algorithm reduces the computation burden [8].

LARS algorithm for the Lasso estimate.

Assume that the predictors have been standardized to
have a mean 0 and unit length, and that the response has a
mean 0. In the k-th iteration, the algorithm is roughly
described as follows.

Step 1 Update the active set. Calculate the absolute
current correlations.

ey =X,y = Jr1);

Update the active set 4 (k).

Jo=0 and C'k = maX{I@kj\}
J

Ay =A(k = 1)+ {j}; A4(0)=¢

and j = argmax {|¢]}
JjEA(k—1)

Step 2 Determine the least angle direction (#;). Define X;,=
(5% - )jeaw) Where s;=sign{éy} and wi =4y (X1 X)) '1;
where 4, =(15(X5.X:)'1,)""° (Here, 1, is a vector of 1’s of
length equaling |4], the size of 4.) Calculate the least angle
direction.

u = Xpwy

Step 3 Calculate the step size. Define ay=xju; for
JA(k). Determine the step size.
If |4| equals the number of predictors,

e = o /Ay and the algorithm is terminated

else

P = mlnﬁA {(Ck ery)/ (A — ai), (ék + &)

/(e + ai) }

(Here, “min"™ indicates that the minimum is taken over
only positive components within each choice of ;.)
Step 4 Predict the response.
¢ = min {y;f where y; = —[3/ SiWki); P = oo
i () -

If §5<Py
Vi = Vi1 + Victk
if jed, B B =0

Bj + Jewiss;.  Otherwise,

Ak +1) {]} where j = argmin {y]}

>0, jeA(k)

Crrj =Xy =) and Cpypy = max {lex11}

Go to Step 2.
else

Vi = Vi + Dtk

it jed, B —B; + Jiwis;. B =0

Otherwise,

Go to Step 1.
2.3. Stepwise regression

Stepwise regression is a standard procedure for variable
selection, which is based on the procedure of sequentially
introducing the predictors into the model one at a time. The
stepwise regression is classified into three methods: forward
selection, backward elimination and stepwise method. The
forward selection adds predictors to the model one at a time.
In contrast to the forward selection, the backward elimi-
nation begins with the full model and successively
eliminates one predictor at a time. An advantage of a
forward selection for a large number of correlated variables,
as opposed to backward elimination, is that the X’X matrix
does not need to be inverted. Meanwhile, the stepwise
method starts as the forward selection, but at each stage the
possibility of deleting a predictor, as backward elimination,
is considered.

In these methods, the number of predictors retained in
the final model is determined by the levels of significance
assumed for inclusion and exclusion of predictors from the
model. In view of the “rule-of-thumb”, the significance
levels of 0.15 give equation with low Mallows-C,, [9]. On
the other hand, the three methods are expected to perform
similarly, so in this study only the stepwise method will be
considered for the comparison. We use the equal signifi-
cance level as entry and removal criteria and select the
proper one from 0.05, 0.1, 0.15, and 0.2 by cross-
validation.

3. Experimental
3.1. Design of simulations

We generate datasets by assuming that true response
follows a linear model having p predictors defined as Eq.

(6).

)4
Yi= Zﬁjxij + &,
=

where & = N(0,6%), (i = 1,2,..,500) (6)

Here, the data matrix X=(x;;) is generated by assuming a
special correlation structure described in Section 3.1.2. For
convenience, we fix the number of relevant predictors as 10
and therefore the rest of predictors (p—10) are irrelevant to
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the response over all cases. We design 108 (=3x3x4X3)
different cases with four factors—the proportion of the
number of relevant predictors among total predictors (3
levels), the magnitude of correlations between predictors (3
levels), the structure of regression coefficients (4 levels),
and the magnitude of signal to noise (3 levels). In each case,
100 replications are made and performance measures are
calculated. At each replication, a different dataset of 500
observations is generated from Eq. (6).

3.1.1. The proportion of relevant predictors among total
predictors

This factor defined as Eq. (7) has three levels of 0.5, 0.25
and 0.1. These levels correspond to p=20, 40, and 100,
respectively.

proportion = 10/p (7)
3.1.2. Magnitude of correlations between predictors

At each replication, a new set of 500 rows of X is
generated from multivariate normal distribution with zero
mean vector and variance—covariance matrix of I'. The
elements of matrix I' are chosen as Eq. (8) since
neighboring process variables (temperatures, e.g.) tend to
be strongly correlated in a real manufacturing process which
consists of consecutive unit processes.

Fii = pliijh (17] = 1,27--,[7) (8)

Here, p is the magnitude of correlations between
predictors which has three levels of 0.5, 0.7 and 0.9. Note
that Eq. (8) gives a very specific pattern to the eigenvalues
and eigenvectors of I' [10]. Fig. 1 shows a comparison of
eigenvalues of the covariance matrix from a real data
encountered in a steel process with those from I in Eq. (8)
for p=145 and p=0.9. In case of I', a sequence of 21
eigenvalues is gradually decreasing from 18 to 1, explaining
85.5% of the variance with the remaining eigenvalues all
small (but larger than 0.05). Meanwhile, in case of real data,
a sequence of 32 eigenvalues is gradually decreasing from
30 to 1 explaining 81% of the variance with the remaining
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eigenvalues, all small (but larger than 0.0001 except two
values near zero). Two patterns of eigenvalues are not
exactly the same, but the decreasing patterns are similar to
each other.

3.1.3. Structure of regression coefficients

The third factor is the structure of regression coefficients.
Two types of equal and unequal coefficients are compared.
It is intended to know performance of selection methods
according to whether relevant predictors have similar effects
on the response or not. Each type has two levels according
to the location of relevant predictors; in the middle of the
range and at the extremes.

In case of equal type, the coefficients of 10 relevant
predictors are chosen as Eq. (9.a).

¢ In the middle of range

.Bj:lv (j=p/2—-4,p/2-3,..p/2+5) (9.2)
e At the extremes
,Bj - 17 (] - 1525--~a5;p 747p - 3vap) (9b)

In case of unequal type, the coefficients of 10 relevant
predictors are constructed as Eq. (10.a).
¢ In the middle of the range

B=(55—1i—05(p+1))7

(j=p/2—4,p/2—3,..,p/2+5) (10.a)
e At the extremes

Br=(li—=05(p+1)]—05(p—11))

(j=12..5p—4p—3,..p) (10.b)

All irrelevant predictors have zero coefficients in both
types. For example, in case of unequal type, when the
relevant coefficients are in the middle for p=20, f3;’s are
0,0,0,0,0,1, 4,9, 16, 25, 25, 16,9, 4, 1, 0, 0, 0, 0,

35

30

20

Eigenvalues

Eigenvalues

1 13 25 37 49 61 3 85 97 109 121 133 145

(a) real data

1 13 25 37 49 61 73 85 97 109

(b) artificial data (p = 145,p=0.9)

121

Fig. 1. Comparison of eigenvalues between real data and artificial data.
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Confusion matrix and the descriptions of its entries
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Predicted classes

Irrelevant predictor
(IR)

Relevant predictor

®)

True Irrelevant a: the number of b: the number of
classes predictor irrelevant predictors irrelevant predictors
(IR) classified correctly classified incorrectly
Relevant c: the number of d: the number of
predictor relevant predictors relevant predictors
R) classified incorrectly classified correctly

To investigate this, when generating y; we select the
standard deviation of error terms through Eq. (11) where
k, the reciprocal of signal to noise ratio, has three levels of
0.33, 0.74, and 1.22. These levels are set so that R-square of
the multiple linear regression with an intercept becomes 0.9,
0.65 and 0.4, respectively, when infinite observations are
assumed. Some simple calculations using the formula for R-
square give k=((1-R*)/R*)"".

o = ky/var(Xp), (k=0.33,0.74,1.22)

(11)

0). When the relevant coefficients are at the extremes,
they are (25, 16,9, 4,1, 0,0, 0,0, 0,0, 0,0, 0,0, 1, 4,
9, 16, 25).

where var(-) is the sample variance.

3.2. Performance measure

3.1.4. Magnitude of signal to noise

We are interested in knowing whether the performance of
variable selection methods is affected by the model fitness.

For the evaluation of different selection methods we
adopt the confusion matrix which contains information

Table 2
Mean G of each method along the cases
k=0.33 k=0.74 k=1.22
v L S v L S v L S
Equal coefficients-middle Prop.=0.5 p=0.5 0.964 0.755 0.966 0.967 0.746 0.951 0.958 0.749 0.875
p=0.7 0.961 0.804 0.975 0.960 0.793 0.881 0.948 0.791 0.737
p=0.9 0.987 0.821 0.876 0.964 0.755 0.660 0.950 0.715 0.550
Prop.=0.25 p=0.5 0.998 0.863 0.973 0.993 0.848 0.959 0.992 0.859 0.880
p=0.7 0.980 0.891 0.978 0.978 0.883 0.874 0.978 0.862 0.723
p=0.9 0.921 0.907 0.857 0.923 0.831 0.650 0.921 0.779 0.556
Prop.=0.1 p=0.5 0.990 0.930 0.979 0.989 0.924 0.971 0.988 0.924 0.872
p=0.7 0.974 0.946 0.980 0.974 0.942 0.867 0.975 0.908 0.721
p=0.9 0.912 0.958 0.869 0.912 0.891 0.649 0.911 0.807 0.541
Equal coefficients-extreme Prop.=0.5 p=0.5 0.989 0.748 0.966 0.981 0.741 0.957 0.958 0.742 0.899
p=0.7 0.988 0.780 0.962 0.970 0.773 0.915 0.949 0.800 0.778
p=0.9 0.883 0.777 0.917 0.826 0.757 0.698 0.758 0.734 0.619
Prop.=0.25 p=0.5 0.990 0.842 0.965 0.988 0.845 0.971 0.987 0.851 0.902
p=0.7 0.959 0.882 0.977 0.962 0.873 0.925 0.960 0.872 0.784
p=0.9 0.942 0.898 0.945 0.942 0.853 0.731 0.942 0.802 0.622
Prop.=0.1 p=0.5 0.987 0.915 0.976 0.984 0.912 0.973 0.978 0.915 0.899
p=0.7 0.966 0.937 0.981 0.967 0.936 0.933 0.963 0.919 0.763
p=0.9 0.901 0.952 0.957 0.903 0.922 0.718 0.902 0.847 0.616
Unequal coefficients-middle Prop.=0.5 p=0.5 0.772 0.746 0.863 0.767 0.746 0.790 0.771 0.727 0.737
p=0.7 0.819 0.803 0.850 0.826 0.754 0.749 0.829 0.741 0.678
p=0.9 0.897 0.769 0.770 0.895 0.728 0.621 0.883 0.670 0.520
Prop.=0.25 p=0.5 0.861 0.841 0.870 0.852 0.815 0.797 0.852 0.777 0.728
p=0.7 0.964 0.856 0.843 0.958 0.816 0.761 0.956 0.760 0.654
p=0.9 0.940 0.831 0.764 0.941 0.780 0.610 0.937 0.707 0.518
Prop.=0.1 p=0.5 0.941 0.885 0.877 0.940 0.834 0.804 0.912 0.799 0.729
p=0.7 0.983 0.896 0.852 0.982 0.848 0.749 0.980 0.786 0.650
p=0.9 0.916 0.862 0.764 0.916 0.806 0.608 0.915 0.745 0.519
Unequal coefficients-extreme Prop.=0.5 p=0.5 0.798 0.745 0.869 0.809 0.749 0.810 0.797 0.717 0.755
p=0.7 0.854 0.781 0.861 0.855 0.756 0.767 0.852 0.750 0.722
p=0.9 0.790 0.766 0.789 0.796 0.728 0.682 0.784 0.711 0.590
Prop.=0.25 p=0.5 0.898 0.824 0.883 0.891 0.802 0.815 0.893 0.766 0.752
p=0.7 0.970 0.849 0.866 0.973 0.801 0.777 0.971 0.791 0.710
p=0.9 0.960 0.847 0.797 0.956 0.780 0.691 0.945 0.755 0.603
Prop.=0.1 p=0.5 0.966 0.881 0.885 0.960 0.840 0.814 0.944 0.816 0.756
p=0.7 0.976 0.895 0.873 0.973 0.857 0.777 0.971 0.806 0.701
p=0.9 0.908 0.883 0.802 0.909 0.828 0.681 0.909 0.779 0.601

V: PLS-VIP, L: Lasso, S: Stepwise.
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about true and predicted classes. Table 1 shows the
confusion matrix and the meanings of its entries in the
context of our study.

From Table 1 accuracy, sensitivity, and specificity are
respectively defined as Egs. (12)—(14).

Accuracy = (a+d)/(a+b+c+d) (12)
Sensitivity = d/(c + d) (13)
Specificity = a/(a + b) (14)

In the classification area, the usual performance measure
is accuracy which is the proportion of predictors correctly
classified. However, it may not be suitable when there is an
imbalance between the numbers of irrelevant and relevant
predictors. For example, consider the case where the
proportion of relevant predictors equals 0.1. A method that
always classifies all predictors as irrelevant will achieve an
accuracy of 90%. Although this looks high, the method
would be useless because it totally fails to select relevant
predictors.

Thus, instead of using accuracy as the overall perform-
ance measure, we suggest using G, the geometric mean of
sensitivity (the proportion of selected relevant predictors
among relevant predictors) and specificity (the proportion of

unselected irrelevant predictors among irrelevant predictors)
[11] as in Eq. (15).

G = (Sensitivity x Speciﬁcity)l/2 (15)

The value of G ranges between 0 and 1. The values close
to 1 imply that most predictors are classified correctly. As
mentioned in ref. [11], this measure has the distinctive
property of being independent of the numbers of relevant
and irrelevant predictors, and is thus robust regardless of the
level of proportion.

4. Results and discussion
4.1. PLS-VIP method vs. the Lasso or Stepwise method

The number of latent variables for PLS regression, the
tuning parameter for the Lasso and the significant levels
for stepwise regression are determined by five-fold cross-
validation which is widely used for estimating prediction
error [12]. As mentioned before, 100 replications for each
of 108 cases are made to evaluate the performance of the
variable selection methods. At each replication, perform-
ance measure of G was calculated. In addition, the root
mean squared error (RMSE) of predicted response for
each method was also obtained to examine prediction
performance.

1.000 1.000
0.900
[
0.700 0.600
Proportion = 0.5 Proportion =0.25 Proportion =0.1 the = 0.5 tho =0.7 tho =09
—m— PLS-VIP 0.882 0.946 0.949 —a—PLS-VIP 0.925 0.947 0.906
A— Lusso 0.755 0.829 0.876 —a—lasso (.817 0.837 0.805
—e— Step 0.795 0.798 0.797 —e—Siep 0.874 0.822 0.693
(a) Proportion (b) Correlation
1.000 1.000
0900 fr-mnmmemmmme e e e e TS
0.700 0.600
Equal - Middle Equal - Extremes | Unequal - Middle |Unequal - Extremes k=033 k=074 k=122
—m— PLS-VIP 0.962 0.945 0.897 0.900 —m— PLS-VIP 0931 0927 0920
—a— Lasso 0.847 0.845 0,790 0.796 —a— Lasso 0.849 0819 0.791
—e—Step 0.829 0.8635 0.729 0.764 —e—Siep 0.894 0.794 0.702
(c) Coefficients (d) Noise

Fig. 2. Mean G of each method according to factors.



1-G. Chong, C.-H. Jun / Chemometrics and Intelligent Laboratory Systems 78 (2005) 103—112 109

4.1.1. Comparison based on G

Table 2 summarizes the simulation results of variable
selection performance by using the average G over 100
replications along the cases. The bold figures denote the
best ones. As seen in Table 2, in most cases, the PLS-
VIP method outperforms the other methods particularly
when the error variance is large in data set or when the
model fitness (R-square) is relatively low. On the other
hand, Fig. 2 shows the average G of each method
according to factors. We confirm again that the PLS-
VIP method outperforms the other methods over all
factors. Besides, the PLS-VIP method seems to be
insensitive to noise while the others seem to be
sensitive.

4.1.2. Comparison based on RMSE
Although the objective of this study is not to compare
performance of response prediction, we provide estimates of

the RMSEs as in Eq. (16) for different methods as
supplement information.

500
RMSE = | > (3 —$,)*/500 (16)
i1

Table 3 summarizes the simulation results of prediction
performance by using the average RMSE over 100 runs
along the cases. The best method is also shown in bold type.
Unlike variable selection performance, PLS does not out-
perform the other methods in some cases. This means that
there may not be a strong relation between variable selection
and prediction performance.

4.2. PLS-VIP method vs. PLS-BETA method

Now, we also compare the PLS-VIP method and the
PLS-BETA method. Assuming that the number of relevant

Table 3
Mean RMSE of each method along the cases
k=0.33 k=0.74 k=1.22
P L S P L S P L S
Equal coefficients-middle Prop.=0.5 p=0.5 1.650 1.654 1.656 3.722 3.707 3.710 6.114 6.069 6.074
p=0.7 2.086 2.083 2.087 4.712 4.682 4.688 7.720 7.681 7.701
p=0.9 2.792 2.773 2.776 6.202 6.172 6.187 10.39 10.35 10.37
Prop.=0.25  p=0.5 1.640 1.655 1.655 3.655 3.667 3.663 6.150 6.124 6.121
p=0.7 2.081 2.081 2.082 4.716 4.689 4.684 7.760 7.741 7.758
p=0.9 2.812 2.790 2.795 6.231 6.205 6.221 10.39 10.37 10.36
Prop.=0.1 p=0.5 1.597 1.657 1.643 3.536 3.646 3.612 6.014 6.081 6.035
p=0.7 2.031 2.071 2.051 4.586 4.639 4.611 7.611 7.656 7.609
p=0.9 2.722 2.743 2.734 6.190 6.233 6.214 10.16 10.18 10.15
Equal coefficients-extreme Prop.=0.5 p=0.5 1.522 1.526 1.528 3.438 3.427 3.430 5.659 5.639 5.644
p=0.7 1.815 1.810 1.812 4.087 4.058 4.062 6.700 6.667 6.686
p=0.9 2.405 2.383 2.386 5.342 5.310 5.320 8.786 8.756 8.769
Prop.=0.25  p=0.5 1.504 1.519 1.519 3.403 3.412 3.416 5.656 5.668 5.670
p=0.7 1.792 1.796 1.797 4.057 4.056 4.053 6.652 6.644 6.649
p=0.9 2.158 2.155 2.155 4.870 4.842 4.855 7.978 7.960 7.970
Prop.=0.1 p=0.5 1.446 1.510 1.498 3.234 3.343 3.319 5.505 5.607 5.562
p=0.7 1.737 1.783 1.771 3912 3.983 3.950 6.498 6.622 6.586
p=0.9 2.063 2.091 2.086 4.676 4.724 4.726 7.765 7.811 7.793
Unequal coefficients-middle Prop.=0.5 p=0.5 2240 22.43 22.46 50.22 50.25 50.29 82.71 82.71 82.71
p=0.7  26.81 26.81 26.85 60.16 60.16 60.21 99.17 99.10 99.18
p=0.9  32.57 32.51 32.58 72.54 72.43 72.56 121.6 121.3 121.4
Prop.=0.25  p=0.5 22.08 22.36 22.37 49.59 50.11 50.08 82.62 83.19 82.90
p=0.7  26.63 2691 26.88 60.10 60.41 60.34 98.69 99.03 98.98
p=0.9  32.26 32.38 32.40 72.86 72.91 72.97 119.7 119.7 119.9
Prop.=0.1 p=0.5 21.22 22.32 22.13 48.04 50.09 49.43 82.29 83.76 82.72
p=0.7  25.74 26.79 26.57 58.46 60.03 59.53 96.08 98.14 97.23
p=0.9 3148 32.37 32.25 71.28 72.31 72.05 118.4 119.1 118.5
Unequal coefficients-extreme  Prop.=0.5 p=0.5 19.12 19.20 19.21 42.99 43.11 43.17 70.83 70.95 71.04
p=0.7  21.40 21.43 21.47 48.35 48.35 48.43 79.33 79.43 79.47
p=0.9 2633 26.28 26.35 58.58 58.56 58.63 96.97 96.66 96.87
Prop.=0.25  p=0.5 18.82 19.13 19.15 42.42 42.92 42.92 70.20 71.02 70.96
p=0.7  21.09 21.34 21.35 47.89 48.24 48.28 78.33 78.77 78.72
p=0.9  23.84 24.03 24.06 54.36 54.45 54.61 90.29 90.26 90.36
Prop.=0.1 p=0.5 1791 19.04 18.86 40.62 42.52 42.07 67.91 70.73 70.00
p=0.7  20.08 21.15 20.99 46.33 47.88 47.55 77.15 79.16 78.39
p=0.9  23.09 23.83 23.80 52.68 53.74 53.65 87.39 88.42 88.33

P: PLS, L: Lasso, S: Stepwise.
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Table 4

Comparison between PLS-VIP and PLS-BETA method
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Equal coefficients

Unequal coefficients

k=0.33 k=0.74 k=1.22 k=0.33 k=0.74 k=122
\Y% B \Y% B \Y% B A% B \% B \% B
Location of coefficients: ~ Prop.=0.5 p=0.5 9.99 10 10 9.99 991 9.91 9.41 8.5 947 815 932 798
middle p=0.7 996 10 9.94 991 99 983 9.65 835 972 793 965 8
p=0.9 9.99 9.9 9.9 9.69 976 907 993 823 983 813 9.9 8.15
Prop.=0.25 p=0.5 10 10 998 10 998 998 94 827 936 794 9.03 7.59
p=0.7 999 10 9.95 998 991 99 977 812 9.68 807 9.61 788
p=0.9 9.98 9.98 9.9 982 971 941 995 818 985 83 9.68  8.26
Prop.=0.1 p=0.5 10 10 996 10 996 995 928 804 913 772 851 815
p=0.7 998 10 9.94 999 988 987 982 814 976 821 953 8.14
p=0.9 10 10 9.9 989 975 966 993 835 986 892 972 899
Location of coefficients: ~ Prop.=0.5 p=0.5 9.99 10 9.96 999 986 994 944 866 946 792 924 793
extreme p=0.7 995 10 9.82 997 9.68 988 964 842 956 796 94 7.84
p=0.9 8.7 9.96 8.14 982 736 955 775 816 765 8 7.58  8.38
Prop.=0.25  p=0.5 999 10 999 10 989 995 952 82 933 7.69 924 733
p=0.7 999 10 9.84 10 9.68 99 9.58 801 962 754 957 775
p=0.9 9.85 10 9.73 989 945 9.69 955 783 951 786 922 843
Prop.=0.1 p=0.5 998 10 10 10 987 987 938 801 923 751 877 742
p=0.7 998 10 992 10 974 993 97 789 9.6 7.87 948  8.13
p=0.9 985 10 9.6 997 929 9.8 972 811 95 846 942 878

V: PLS-VIP, B: PLS-BETA.

predictors is known as K (i.e., K=10), we select predictors
having the first K largest VIP scores as well as those
having the first K largest absolute coefficients, then
compare the performance using average number of
relevant predictors among K selected predictors over 100
runs. As seen in Table 4, when the structure of coefficients
is equal, PLS-BETA method outperforms PLS-VIP method
in most cases. When the structure of coefficients is
unequal, the PLS-VIP method outperforms the PLS-BETA
method.

Table 5
Mean proper cutoff values along the cases

4.3. Cutoff values of the PLS-VIP method

Although the performance of PLS-VIP method may
depend on the cutoff value, ‘greater than one rule’ is
generally used to select relevant predictors. The proper
cutoff value of the PLS-VIP method according to 108 cases
is provided by averaging v;* which is defined by Eq. (17)
where v varies from 0.01 to 3 with increments of 0.01. Here,
G is a concave function of v and the subscript i is for a
replication in a case. Table 5 shows the mean proper cutoff

Equal coefficients

Unequal coefficients

k=0.33 k=0.74 k=1.22 k=0.33 k=0.74 k=1.22
Location of coefficients: Prop.=0.5 p=0.5 0.80 0.81 0.80 0.64 0.66 0.67
middle p=0.7 0.87 0.88 0.85 0.79 0.78 0.79
0p=0.9 0.97 0.94 0.94 0.93 0.94 0.93
Prop.=0.25 p=0.5 0.93 0.93 0.95 0.71 0.72 0.71
p=0.7 1.04 1.02 1.04 0.92 0.91 0.90
p=0.9 1.08 1.09 1.07 1.05 1.04 1.03
Prop.=0.1 p=0.5 1.11 1.15 1.16 0.84 0.87 0.88
p=0.7 1.32 1.33 1.31 1.14 1.12 1.07
0p=0.9 1.39 1.40 1.38 1.35 1.33 1.30
Location of coefficients: Prop.=0.5 p=0.5 0.83 0.84 0.84 0.67 0.66 0.71
extreme p=0.7 0.93 0.93 0.90 0.83 0.84 0.81
p=0.9 0.94 0.80 0.92 0.87 0.90 0.84
Prop.=0.25 p=0.5 1.00 1.00 0.99 0.78 0.80 0.78
p=0.7 1.12 1.08 1.07 0.94 0.92 0.94
0p=0.9 1.06 1.05 1.02 0.98 1.00 0.96
Prop.=0.1 p=0.5 1.22 1.24 1.22 0.94 0.92 0.98
p=0.7 1.44 1.41 1.36 1.18 1.16 1.15
p=0.9 1.34 1.37 1.33 1.28 1.28 1.26
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Fig. 3. Mean proper cutoff values according to factors.

values along the cases. As seen, some cases require higher
or lower cutoff values than one to increase the variable
selection performance of the PLS-VIP method.

vi* =< Min| argmax G(v)
ve{0.01,0.02,..,3}

+Max| argmax G(v) | /2
ve{0.01,0.02,..3}

Fig. 3 shows the effect plots of mean proper cutoff values
according to factors. When proportion of relevant predictors
is low, the magnitude of correlation is high, or the structure
of coefficients is equal, the proper cutoff value is required to
be greater than one.

(17)

5. Conclusions

In this paper, we conducted 10,800 experiments to
explore the nature of the PLS-VIP method as compared
with other variable selection methods. Experiments were
designed by considering four factors including the propor-
tion of the number of relevant predictors among total
predictors, the magnitude of correlations between predic-
tors, the structure of regression coefficients, and the
magnitude of signal to noise.

First, the PLS-VIP method was compared with the Lasso
and Stepwise method. The PLS-VIP method performed
excellently in identifying relevant predictors and outperformed
the other methods. It was also found that a model with good
fitness performance may not guarantee good variable selection
performance. Thus, for the purpose of selecting relevant
process variables, process engineers must be careful when
using model performance such as RMSE, R-squares, etc.

Second, the PLS-VIP method was compared with the
PLS-BETA method. We found an interesting observation
that PLS-VIP and PLS-BETA method might be comple-
mentary. So, if we use a strategy which combines these two
methods for selecting relevant predictors, better variable
selection performance could be achieved. Actually, Wold et
al. [6] recommend a combination of PLS-VIP and PLS-Beta
for variable selection, which states that both should be small
for a variable to be excluded.

Finally, proper cutoff values of the PLS-VIP method
were provided to judge whether using the ‘greater than one
rule’ is adequate or not. The proper cutoff value may be
higher than 1 under low proportion, high correlation, or an
equal coefficients structure.
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